A NEW METHOD FOR THE PREPARATION OF α -KETO CARBOXYLIC ESTERS BY THE PHOTO-OXIDATION OF 1-(1-ETHOXYCARBONYLALKYL) PYRIDINIUM IODIDES

Takeshi TAKEDA and Teruaki MUKAIYAMA **

- * Laboratory of Organic Chemistry, Tokyo Institute of Technology Ookayama, Meguro-ku, Tokyo 152
- ** Department of Chemistry, Faculty of Science, The University of Tokyo Hongo, Bunkyo-ku, Tokyo 113

 α -Keto carboxylic esters were obtained in good yields by the photo-oxidation of 1-(1-ethoxycarbonylalkyl)pyridinium iodides in the presence of tetra-n-butylammonium iodide. Similarly, 1-methyl-2-(1-ethoxycarbonylalkylthio)pyridinium iodides were oxidized to give α -keto carboxylic esters.

In the previous paper $^{1)}$, it was shown that a variety of 1-(2-oxoalkyl)pyridinium iodides were oxidized with oxygen gas under irradiation with a high pressure mercury lamp to produce α -diketones in good yields. This result suggests that the direct oxidation of pyridinium salts or the other onium salts to carbonyl compounds may have a synthetic significance.

In the present investigation, it was established that α -keto carboxylic esters were obtained in fairly good yields by the photochemical reaction of 1-(1-ethoxy-carbonylalkyl)pyridinium iodides with oxygen gas in the presence of tetra-n-butyl-ammonium iodide.

For example, a solution of 1-(1-ethoxycarbonylundecyl)pyridinium iodide (1 mmol) and tetra-n-butylammonium iodide (0.73 mmol) in CH₃CN (20 ml) in a pyrex glass testtube was irradiated with a high pressure mercury lamp while oxygen was bubbled through. After the irradiation (60 min), the reaction mixture was poured into an aqueous Na₂SO₃ solution, and the mixture was shaken until a red color of iodine disappeared. An organic layer was extracted with ether and the extract was condensed under reduced pressure. The residue was chromatographed on silica gel and ethyl 2-oxododecanoate was isolated in 83% yield.

The present procedure was also successfully applied to the oxidation of pyridinium salts of α -bromocarboxylic esters when it was treated in the presence of 1.73 molar equivalent of tetra-n-butylammonium iodide. These results are listed in Table (I).

R	х	Time (min)	Yield(%)
\bigcirc	I	30	86
	Br	30	93
О - Сн ₂ -	I	60	27
СН ₃ (СН ₂) 9	I	60	83
3 2 3	Br	30	60
CH ₃ +CH ₂ + ₆	I	60	75
СН ₃ (СН ₂) 6 (СН ₃) 2 СНСН ₂ -	I	60	63
EtO-C+CH ₂ + ₂	I	60	16

Table (I). The photo-oxidation of 1-(1-ethoxycarbonylalkyl)pyridinium iodides.

In a similar manner, 1-methyl-2-(1-ethoxycarbonylalkylthio)pyridinium iodides were oxidized in the presence of 3.7 molar equivalent of tetra-n-butylammonium iodide to give the corresponding α -keto carboxylic esters in fairly good yields (see Table (II)). In these cases, the formation of a small amount of unidentified by-products was observed.

The photo-oxidation of 1-methyl-2-(1-ethoxycarbonylalkylthio)pyridinium iodides.

R	Time (min)	Yiel (II)	.d (%) (IV)
\bigcirc	30	85	77
Сн ₂ −	60	35	59
Сн ₃ (Сн ₂)	60	58	64
CH ₃ +CH ₂ +6	60	61	66
(CH ₃ + ₂ CHCH ₂ -	60	57	56

Concerning the preparation of α -keto carboxylic esters by the oxidation of carboxylic esters, the direct oxidation with selenium oxide²⁾ and through α-hydroxyimino carboxylic esters by employing ethyl nitrite³⁾ were reported. The oxidation of α -halocarboxylic esters with dimethyl sulfoxide 4) was also reported.

It is noted that the present method for the preparation of α -keto carboxylic esters by photo-oxidation of 1-(1-ethoxy-

carbonylalkyl)pyridinium iodides has some advantages over the above mentioned methods in the following point; namely, the oxidation proceeds under mild reaction conditions by simply passing gaseous oxygen.

Further works on the scope and utility of the reaction are now in progress.

REFERENCES

- 1) T. Mukaiyama, K. Atsumi, and T. Takeda, Chem. Lett., 1033 (1975).
- 2) N.N.Mel'nikov and Y.A.Baskakov, Zhur.Obshchei.Khim., 21, 694 (1951). C.A., 45, 9020a (1951).
- 3) R. Fischer and T. Wieland, Chem. Ber., 93, 1387 (1960).
- 4) (A) W.W.Epstein and F.W.Sweat, Chem. Rev., 67, 247 (1967).
 - (B) I.M.Hunsberger and J.M.Tien, Chem. Ind. (London), 88 (1959).